Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Molecular clouds (MCs) are active sites of star formation in galaxies, and their formation and evolution are largely affected by stellar feedback. This includes outflows and winds from newly formed stars, radiation from young clusters, and supernova explosions. High-resolution molecular line observations allow for the identification of individual star-forming regions and the study of their integrated properties. Moreover, state-of-the-art simulations are now capable of accurately replicating the evolution of MCs, including all key stellar feedback processes. We present13CO(2–1) synthetic observations of the STARFORGE simulations produced using the radiative transfer code RADMC-3D, matching the observational setup of the SEDIGISM survey. From these synthetic observations, we identified the population of MCs using hierarchical clustering and analysed them to provide insights into the interpretation of observed MCs as they evolve. The flux distributions of the post-processed synthetic observations and the properties of the MCs, namely, radius, mass, velocity dispersion, virial parameter, and surface density, are consistent with those of SEDIGISM. Both samples of MCs occupy the same regions in the scaling relation plots; however, the average distributions of MCs at different evolutionary stages do not overlap on the plots. This highlights the reliability of our approach in modelling SEDIGISM and suggests that MCs at different evolutionary stages contribute to the scatter in observed scaling relations. We study the trends in MC properties, morphologies, and fragmentation over time to analyse their physical structure as they form, evolve, and are destroyed. MCs appear as small diffuse cloudlets in early stages, and this is followed by their evolution to filamentary structures before being shaped by stellar feedback into 3D bubbles and getting dispersed. These trends in the observable properties of MCs are consistent with other realisations of simulations and provide strong evidence that clouds exhibit distinct morphologies over the course of their evolution.more » « lessFree, publicly-accessible full text available December 1, 2026
-
Stars form in dense cores within molecular clouds, and newly formed stars influence their natal environments. How stellar feedback impacts core properties and evolution has been the subject of extensive investigation. We performed a hierarchical clustering (dendrogram) analysis of a STARFORGE (STAR FORmation in Gaseous Environments) simulation, modelling a giant molecular cloud to identify gas overdensities (cores) and study changes in their radius, mass, velocity dispersion, and virial parameter with respect to stellar feedback. We binned these cores on the basis of the fraction of gas affected by protostellar outflows, stellar winds, and supernovae and analysed the property distributions for each feedback bin. We find that cores that experience more feedback influence are smaller. Feedback notably enhances the velocity dispersion and virial parameter of the cores, more so than it reduces their radius. This is also evident in the linewidth–size relation, according to which cores in higher-feedback bins exhibit higher velocities than their similarly sized pristine counterparts. We conclude that stellar feedback mechanisms, which impart momentum to the molecular cloud, simultaneously compress and disperse the dense molecular gas.more » « less
-
This manuscript reports on the direct observation of a -delayed two-neutron emission in a study of at the ISOLDE Decay Station using neutron spectroscopy. We also report on the first measurement in decay of the long-sought excited state in , attributed to be the neutron single-particle orbital. The observation of sequential neutron emission is used to extract the relative population of the state, which was found to be much smaller than the predictions of the statistical model. The experiment was possible because of the innovative use of a neutron array with neutron discrimination and interaction tracking capabilities. This is the first study of the details of the two-neutron emission for a nucleus, which belongs to the -process path. Understanding -delayed two-neutron emission probabilities is essential to validate models used in astrophysical -process nucleosynthesis calculations. Observing two-neutron emissions in decay paves the way for new experiments to study energy and angular correlations for -delayed multineutron emitters.more » « lessFree, publicly-accessible full text available October 1, 2026
An official website of the United States government
